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Abstract 

 
Non destructive testing requires the predetermination of the parameters of the experiment. In this paper the focus is 

on the design of the experiments for infrared testing based on analytical models. Resulting design parameters are obtained 
using conservative approximate equations. The results are particularly relevant for non destructive testing in thin plates of 
various materials  
 
1. Introduction 

 
The goal of this paper is to develop equations that permit the design of experiments for non-destructive infrared 

testing. These equations permit the predetermination of the frequency for the input thermal signal given the material defect 
size and the first time when steady state values can be recorded. Infrared testing is used for obtaining thermal images 
influenced by internal defects. In the proposed approach the model used for the experimental design of non-destructive 
infrared active testing of materials is reduced from three-dimensional to one-dimensional. The results, recorded before 
reflected thermal waves from more remote boundaries arrive back to the point under investigation, can be used for defect 
detection. Simulation results illustrate the usefulness of the pre-determination of the characteristics of the input thermal signal 
for the investigation of possible defects in materials. 
 
2. Direct problem formulation for heat flow 

    
Direct problem is formulated for one-dimensional heat conduction problem by the non-homogenous equation [1]  

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝛼. ∇2𝑢 𝑥, 𝑦, 𝑧, 𝑡 − ∆𝑡 + 𝐹(𝑥, 𝑦, 𝑧, 𝑡 − ∆t)        (1)                                                                                                                                 
Where:  
u(x, t) is the temperature of a solid body in the point x at time t. 
𝛼 is the diffusivity coefficient given by  
𝛼 = 𝑘/(𝜎. 𝜏)             (2)    
where 𝑘  is the thermal conductivity [W/(m·K)],          
 is the specific heat of the solid body conducting the heat [J/(kg·K)] 
 is the volume density [kg/m3] 
F(x, y, z, t) is heat density (or heat flux) from a heat source.   
Direct problem refers to the effects of heat density or distributed heat flux F(x, t) sources on the distributed body temperature 
u(x, t).  
Boundary conditions are specific to each particular case. Initial conditions take the form  
𝑢 𝑥, 𝑡 = 𝜑(𝑥)            (3) 
 
The method of separation of variables leads to the solution 𝑢 𝑥, 𝑡 = 𝑋 𝑥 . 𝑇 𝑡 .  The solution for the direct problem is not in 
closed form and this results in major difficulties in real-time solution of the inverse problem for determining F(x, t)  for 
achieving a desired u(x, t). Moreover, often the external heat source or the external temperature input is on the boundary and 
is included in the boundary conditions. 
This paper investigates the limits of validity of a 1D heat transfer model for the design of the experiments in non-destructive 
infrared testing for 2D and 3D materials.  
                                                                                                    
The boundary temperature at x=0 is assumed to be cosinusoidal 𝑢 0, 𝑡 = 𝑈 cos⁡(𝜔𝑡 − 𝜀) 
where U is the amplitude of the temperature oscillation. The value of the parameter - is the initial phase of 𝑢(0, 𝑡) For a 
semi-infinite solid (x≥0) and initial temperature 𝑢 0, 𝑡 = 0, the solution of Eq. 1is composed of a steady state  uss  and a 
transient part utr [1] 

 
𝑢 𝑥, 𝑡 = 𝑢𝑠𝑠(𝑥, 𝑡) + 𝑢𝑡𝑟 (𝑥, 𝑡)  
             (4)                                      
where 
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0
 𝜔  𝑡 −

𝑥2

4𝛼𝜇2 − 𝜀 𝑒−𝜇2
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𝑢𝑠𝑠 𝑥, 𝑡 =
2𝑈

 𝜋
 𝑐𝑜𝑠
∞

0
 𝜔  𝑡 − 𝑥 

𝜔

2𝛼
 − 𝜀 𝑒−𝜇2
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The definite integral in (6) yields to [1] 

𝑢𝑠𝑠 𝑥, 𝑡 = 𝑈𝑒
−𝑥 𝜔

2𝛼 
𝑐𝑜𝑠  𝜔𝑡 − 𝑥 

𝜔

2𝛼
− 𝜀          (7)                                                            

In which the coefficient of x is the wave number K given by 
𝐾 =  𝜔/2𝛼 
 
2.1. Determination of the Duration t2%(x) of the Transient Part utr(x,t) 
                                      

The transient part, utr(x,t), vanishes as t, when that happens the upper limit results in limt 𝑥/ 𝛼𝑡  0  and the 
integral tends towards zero. The transient regime can be considered practically finished when its contribution is less than 2% 
of the steady state value of u(x, t). For this purpose, an approximate form is useful. First, given that  
 
−1 ≤ 𝑐𝑜𝑠  𝜔(𝑡 −

𝑥2

4𝛼𝜇2 − 𝜀 ≤ 1           (8)     
 
Eq. (5) takes values within the limits 
 

−
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0
𝑑𝜇 ≤ 𝑢𝑡𝑟  𝑥, 𝑡 ≤

2𝑈

 𝜋
 𝑒−𝜇2

𝑥

2 𝛼𝜋

0
𝑑𝜇         (9) 

       
The integral is a bell shaped Gauss function, symmetric with regard to . For any positive values of,e−μ2

< 1 therefore, Eq. 9 
turns into 
 
−

𝑈𝑥

 𝜋𝛼𝑡
≤ 𝑢𝑡𝑟 (𝑥, 𝑡) ≤

𝑈𝑥

 𝜋𝛼𝑡
            (10) 

or 
 𝑢𝑡𝑟 (𝑥, 𝑡) ≤

𝑈𝑥

 𝜋𝛼𝑡
             (11) 

 
Which  tends toward 0 as t. 
The steady state harmonic part, uss(x,t), is the value of u(x, t) after the end of the transient regime. In fact, for 1D heat 
transfer, there is a closed form solution given by (7) which gives  the amplitude of uss(x,t)  
 
 𝑢𝑠𝑠(𝑥) = 𝑈𝑒−𝑥 𝑤/2𝛼   (12) 
 
The 2 % settling time is, in this case, defined by  
 

𝑈𝑥

 𝜋𝛼𝑡2%
= 0.02𝑈𝑒−𝑥 𝜔/2𝛼             (13) 

 
This gives the equation for obtaining a conservative approximation of the 2 % settling time 
 
𝑡2% 𝑥 =

1

𝜋𝑘
(

𝑥

0.02𝑒−𝑥 𝜔/2𝛼
)2           (14) 

 
For x= 0.1 [mm] and  = 0.1 [rad/s], t2 % results in 0.093 [s] for aluminum and 69.297 [s] for rubber.   
In Fig. 1 are shown the results for  t2 %   at x = 0.3[mm] for (a) aluminum and (b) rubber as functions of ω. The outcomes 

indicate that selecting lower values for  result in shorter settling times. 
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(a)                                                                           (b) 

Fig. 1.  Settling time t2 % at x = 0.3[mm] for (a) Aluminum and (b) Rubber vs. ω (Input Frequency)  

 
2.2. Determination of the Frequency  of the Excitation Signal 

 
 The amplitude of uss(x,t) from Eq. 12 shows an exponential decrease with x and . This indicates that, in order 
to compensate for the exponential decay of |uss(x)| with the increase of distance x, a reduction of the radial frequency ω of 
the input 𝑢(0, 𝑡0 = 𝑈𝑐𝑜𝑠(𝜔𝑡 − 𝜀) can be effective. 
Eq. 12 gives 
𝜔 =

2𝑘

𝑥2 [ln{ 𝑢𝑠𝑠(𝑥) }]2           (15)      
 
Fig. 2 illustrates the input signal frequency,  as  a function of variations in  the ratio of  |uss(x)| and the input signal amplitude 
U, ( 𝑈𝑠𝑠 𝑥  /𝑈),  at x = 0.3[mm],  for (a) aluminum and (b) rubber. In accordance to simulation results, selecting higher values 
of  𝑈𝑠𝑠(𝑥) /𝑈 will result in lower values of. Namely smaller amounts of input frequency yields in steady state outputs with 
the amplitudes which are easier to measure accurately. 
 

  
 

(a)                                                                 (b) 
 

Fig. 2.  Input frequency ω at x=0.3 [mm] for (a) Aluminum and (b) Rubber function vs. |uss(x)| /U 
 

 
2.3. Determination of the minimum time Θ required for uss(x, t) measurement 

 
Given the period T = 2/ of the excitation signal, the determination of its amplitude |uss(x)| given by Eq. 12 and of 

its phase difference, Kx ,with regard to u(0,t), the duration Θ of the measurement has to cover at least two extreme values 
and two zero crossings, i.e. at least one period T of the cosinusoidal signal, to reduce the effect of measurement noise, i.e. 
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Θ >

λ

ν
=

λ

 2𝛼ω
            (16) 

 
Fig. 3 shows the variations of the minimum time required for uss(x, t) measurement for (a) aluminum and (b) rubber, function 
of the input signal frequency. 

 
(a)                                                                                               (b)  

  

Fig. 3. Minimum time required for uss(x, t) measurement for (a) Aluminum and (b) Rubber vs.  𝜔(Input frequency) 
 

2.4. Determination of the Time Δt for First Reflection  

Referring to equation (7) and considering the general form of electromagnetic wave propagation, the relationship between 
the wave number and the corresponding velocity is described as: 

𝑘 ≡
2𝜋

𝜆
=

2𝜋𝜈

𝑉
=

𝜔

𝑣𝑝
            (17)

           
Where ν is the frequency of the thermal wave, V is the  velocity of the wave and ω is the angular frequency of the wave. 

It can be seen that the velocity V of the thermal wave propagation is given by the ratio of the coefficients of t and x from Eq. 
(7) as  /(/2k), i.e.  

 𝑉 =  (2𝑘𝜔)            (18) 
 
For an excitation signal with radial frequency  and period 𝑇 = 2𝜋/𝜔 
 
𝑉 =  (4𝜋𝑘/𝑇)            (19)                                     
 
Assuming that the plate has the dimensions Y along y and Z along z, and that the closest boundary of the plate along y and z 
is m = min {Y, Z}, therefore the earliest time for the first reflection on the boundary is given by  
 
∆𝑡 =

𝑚

𝑉
= 𝑚/ (2𝑘𝜔)           (20) 

 
For 𝑡 > ∆𝑡, the signal u(x, t) is composed not only of the direct thermal wave, but also of the reflected thermal waves and, 
consequently, becomes more complex and difficult to analyze for non-destructive testing.  
 
Fig.4 shows the variations of the earliest time for the first reflection on the boundary, Δt, for m=1,   as a function of the input 
signal frequency  for both aluminum and rubber,. 
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                 (a)           (b)     

Fig. 4.  The relationship between the first reflection time Δt and input frequency ω for a) Aluminum, and (b) Rubber, the 
shortest distance to the boundary m is assumed unity) 

 
 
3. Simulation Results for 1 D Approach of  Non-destructive Infrared Testing 
 

In this paper the possibility of using 1D heat transfer approximation for the design of the experiments in non-
destructive infrared testing of 2D and 3D materials is investigated. This approximation is based on assuming that 2 % settling 
time of utr(x,t) is short enough that the test can  be focused on  steady state harmonic, uss(x,t), part of u(x, t) to characterize 
defects in materials. In this simulation, the defect investigated is a variation of the width L of a plate/beam about a nominal 
value, as a result of material processing variations. These simulations were carried out to determine the efficient radial 
frequency ω  of the input cosinusoidal signal u(0, t), given the material type characterized by thermal diffusivity coefficient 𝛼 
and the nominal width L. 
For the case of a sinusoidal heat source with the amplitude of 1 at x=0 [m], u(0, t) = cos(ωt), the simulation results of the 
steady state harmonic temperature uss(x,t) are shown in Fig. 5 and 6, for aluminum and rubber. Thermal diffusivity 
coefficients, 𝛼, are 1.3× 10−7 [𝑚2/𝑠] for rubber and 8.6× 10−5 [𝑚2/𝑠] for aluminum.   In Fig. 5, at x = L = 0.01[m], for 
aluminum  the amplitude of the signal is much smaller than at  x = 0 [m], but still can be measured. For rubber, because of 
the smaller diffusivity, the amplitude of the signal at x = 0.01[m]   is extremely small, almost close to zero, and is not 
measurable any more. The results in Fig. 6 show that, for rubber, even by decreasing ω to 0.05 [rad/s], still no signal reaches 
the other end, and only for the frequency ω equals to 0.01[rad/s], a very small amplitude results at x=0.01[m].  

 
Aluminum                                                            Rubber 

Fig. 5. Steady state harmonic temperature uss(x,t) for  L = 0.01 [m] and =5 [rad/s] 
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         Aluminum                                                   Rubber  

 
 
 
 
 
 
 
 
 
 
 
 

  
Aluminum                                                            Rubber 
Fig. 6 Steady state harmonic temperature uss(x,t) for  L=0.001[m] and =5 [rad/s]           

 
Conclusions 

 
Prior experimental design of the experiments for infrared non destructive testing requires for the choice of test parameters. 
The paper presented the methodology tor obtain the radial frequency of the external temperature variation for a desired ratio| 
uss  (x, t)|/U,  for obtaining the time when the measurement of uss (x, t) can be effective, i.e. after the end of the transient 
regime, and for the calculation of an conservative upper limit of the 2% settling time. Simulation results illustrate the 
usefulness of these theoretical results. 
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